This API guide provides a quick overview of Vectice's simple Python API calls to help you get started auto-documenting your datasets, models, and notes.
# Install Vectice latest packagepip install vectice# Install a specific version of the Vectice packagepip install vectice==<version number>
Connect to Vectice
Get started by connecting to the Vectice API and starting an iteration.
#import and connect to Vecticeimport vecticeconnect = vectice.connect( api_token ='your-api-key', # Paste your api key host ='https://app.vectice.com', # Paste your host)# Connect to your project phase using your phase IDphase = connect.phase("PHA-XXX")#You can fetch the relevant phase ID from your chosen Vectice project in the app.#Create an iterationiteration = phase.create_or_get_current_iteration()
#import and connect to Vecticeimport vecticeconnect = vectice.connect(config="your-api-config.json")#Enter your API key JSON file# Connect to your project phase using your phase IDphase = connect.phase("PHA-XXX")#You can fetch the relevant phase ID from your chosen Vectice project in the app.#Create an iterationiteration = phase.create_or_get_current_iteration()
Auto-document your assets
Auto-document your notes, datasets, and models directly to Vectice.
Auto-document NOTES
# Auto-document your first comments or notesiteration.log("this is a comment")
Auto-document DATASETS
For instructions on using these resources, refer to the Vectice API Reference guide's Resources section.
from vectice import FileResource, Dataset# Auto-document your first dataset from a local filefile_resource =FileResource(paths="my/file/path", dataframe=your_df)clean_dataset = Dataset.clean(resource=file_resource, name="your_dataset_name")iteration.log(clean_dataset)
from vectice import BigQueryResource, Dataset# Auto-document your first dataset from BigQuerybq_resource =BigQueryResource(paths="your-bq-table", dataframes=your_df)clean_dataset = Dataset.clean(resource=bq_resource, name="your_dataset_name")iteration.log(clean_dataset)
from vectice import S3Resource, Dataset# Auto-document your first dataset from S3s3_resource =S3Resource(uris="s3://.../<file_path_inside_bucket>", dataframes=your_df)clean_dataset = Dataset.clean(resource=s3_resource, name="your_dataset_name")iteration.log(clean_dataset)
from vectice import GCSResource, Dataset# Auto-document your first dataset from GCSgcs_resource =GCSResource(uris="gs://.../<file_path_inside_bucket>", dataframes=your_df)clean_dataset = Dataset.clean(gcs_resource, name, attachments)iteration.log(clean_dataset)
from vectice import DatabricksTableResource, Dataset# Auto-document your first dataset from Databricksdb_resource =DatabricksTableResource(paths="my-table", dataframes=your_df)clean_dataset = Dataset.clean(resource=gcs_resource, name="your_dataset_name")iteration.log(clean_dataset)
Auto-document MODELS
from vectice import Model# Auto-document your first modelmodel =Model(metrics, properties, attachments, predictor)iteration.log(model)
import mlflowfrom mlflow.client import MlflowClientfrom vectice import Model# Auto-document your first modelmodel = Model.mlflow( run_id="your-mlflow-run-id", client=MlflowClient() #also work with client=mlflow )iteration.log(model)
Close your iteration
Once you are done logging your assets for an iteration, mark it complete.
# Completes and closes the current iteration once you are happy with ititeration.complete()